X
تبلیغات
شهر جغرافیا - زلزله
زلزله لرزش ناگهانی پوسته جامد زمین است که هر از چند گاهی در نواحی که بر روی بند زلزله خیز قرار دارند رخ می‌دهد. این پدیده طبیعی دارای خصوصیات و وی‍ژگیهای منحصر به فردی است، که آگاهی از پدیده‌های همراه زلزله ، شناخت گسلها و انواع آن در تعیین الگوی لرزه زمین ساخت و رژیم لرزه خیزی مناطق مختلف دارای اهمیت است.

                                                  


ساختار درونی زمین:

پدید آمدن زلزله های اخیر که حاصل جابجایی در پوسته زمین است، و انفجار مواد مذاب از یک آتشفشان فعال، تنها نمایشگر قسمتهای پایانی از یک پروسه طولانی است که ساختار کنونی کره زمین را بوجود آورده است. پدیده­های زمین شناسی که در داخل زمین اتفاق می­افتند تنها در سایه توجه به تاریخچه کره زمین و نحوه تغییرات آن در طول سالیان کهن قابل شناخت است.در ابتدای پیدایش کره زمین، بدلیل بالا بودن دمای آن، تمام مواد تشکیل دهنده آن بصورت مذاب بودند که به دلیل تفاوت در وزن و چگالی این مواد، سه لایه اصلی در سطح زمین پدید آمده است. این تقسیم بندی بر اساس تفاوت خصوصیات شیمیایی مواد تشکیل دهنده آن قابل تشخیص است:

1- پوسته:

پوسته کره زمین لایه نسبتا کم عمقی است که این لایه سنگی سطحی، به دو نوع کلی تحت عنوان پوسته قاره­ای و پوسته اقیانوسی طبقه­بندی می­شود. پوسته اقیانوسی حدود 7 کیلومتر ضخامت داشته و از سنگهای آذرینی تحت عنوان "بازالت" تشکیل شده است. در مقابل ، پوسته قاره ای دارای ضخامت متوسط 35-40 کیلومتر است ولی در برخی مناطق کوهستانی ممکن است از 70 کیلومتر نیز تجاوز نماید. برخلاف پوسته اقیانوسی، که از مواد شیمیایی یکنواختی تشکیل شده است، پوسته قاره­ای شامل انواع مختلفی از سنگها می­باشد. قسمت فوقانی پوسته قاره­ای از سنگهای گرانیتی تشکیل شده، در حالی که قسمت تحتانی آن شبیه بازالت است.

2- گوشته:

بیش از 82%  از حجم زمین در گوشته قرار دارد که یک ورقه جامد و سنگی را تا عمق 2900 کیلومتری تشکیل می­دهد. مرز بین پوسته و گوشته، تفاوت فاحشی را در مشخصات شیمیایی نشان می­دهد.

3- هسته :

تصور می­شود که ترکیب اصلی هسته از آلیاژ آهن- نیکل با مقادیر کمی از اکسیژن، سیلیکون و سولفور باشد. به دلیل فشار زیاد در هسته مواد تشکیل دهنده آن دارای چگالی بالایی حدود 14 برابر چگالی آب در سطح زمین هستند. مشخصه داخل کره زمین افزایش تدریجی دما، فشار و چگالی مواد تشکیل دهنده با افزایش عمق است. برآورد می­شود که دما در عمق 100 کیلومتری بین 1200 تا 1400 درجه سانتیگراد باشد، درحالی که دما در مرکز کره زمین ممکن است از 6700 درجه سانتیگراد نیز تجاوز نماید. افزایش تدریجی در دما و فشار با عمق، مشخصات فیزیکی و در نتیجه رفتار مکانیکی مواد تشکیل دهنده زمین را تحت تاثیر قرار می­دهد. وقتی ماده­ای تحت گرما قرار می­گیرد، اتصالات شیمیایی آن ضعیف شده و مقاومت مکانیکی آن کاهش می­یابد و درصورتی که دما از نقطه ذوب ماده مورد نظر فراتر رود اتصالات شیمیایی شکسته شده و پدیده ذوب اتفاق می­افتد. اگر دما تنها معیار تعیین کننده ذوب مواد بود در این صورت باید کره زمین تبدیل به یک توپ مذاب با یک پوسته نازک جامد می­شد. درحالی که فشار نیز با عمق افزایش می­یابد و تمایل دارد که مقاومت سنگ­ها را افزایش دهد.

بر اساس مشخصات فیزیکی و مقاومت مکانیکی میتوان زمین را به 5 لایه مختلف تقسیم بندی نمود:

لیتوسفر ، استنوسفر، مزوسفر یا گوشته پایینی،  هسته بیرونی و هسته درونی.

 لیتوسفر(سنگ کره):

بر اساس مشخصات فیزیکی، لایه بیرونی کره زمین شامل پوسته و لایه خارجی گوشته است که تشکیل دهنده یک لایه نسبتا سرد و صلب می باشند درحالی که این لایه­ها از مواد متفاوت شیمیایی تشکیل شده است، ولی به لیل سرد بودن و مقاوم بودن رفتار واحدی را از خود نشان می­دهد.لیتوسفر در قسمت قاره­ای بطور متوسط 100 کیلومتر ضخامت دارد ولی ممکن است به بیش از 250 کیلومتر در زیر قسمتهای قدیمی قاره­ها برسد. در زیر اقیانوسها ضخامت لیتوسفر از چند کیلومتر در قسمت رشته کوه های اقیانوسی تا حدود 100 کیلومتر در قسمتهای قدیمی­تر و سردتر پوسته اقیانوسی می­رسد.

 استنوسفر:

در زیر لیتوسفر و در قسمت فوقانی گوشته، تا عمق 660 کیلومتر، یک لایه نرم و نسبتا ضعیف قرار دارد که به عنوان استنوسفر شناخته می­شود. قسمت بالای استنوسفر  دارای چنان دما و فشاری است که منجر به ذوب بسیار اندکی از این لایه ­می­شود. در برابر این ناحیه ضعیف، لیتوسفر جدا از لایه زیرین خود است و نتیجه این جدا بودن حرکت مستقل لیتوسفر نسبت به استنوسفر است.

 مزوسفر یا گوشته پایینی:

  زیر ناحیه ضعیف استنوسفر، افزایش فشار اثر دمای بالا را خنثی کرده و سنگها تا حدودی با افزایش عمق مقاومتر می­شوند. در عمق 660 کیلومتر تا 2900 کیلومتر یک لایه صلب­تر به نام مزوسفر ( کره میانی ) یا گوشته پایینی یافت می­شود. برخلاف مقاومت آنها، سنگهای مزوسفر همچنان گرم بوده و توانایی جریان یافتن را دارا می­باشند.

هسته داخلی و خارجی:

هسته که تشکیل یافته از آلیاژ آهن -  نیکل می­باشد، به دو لایه تقسیم می­شود که مقاومت مکانیکی کاملا متفاوتی را نشان می­دهند. هسته خارجی یک لایه مایع به ضخامت 2270 کیلومتر می­باشد. ثابت شده است که جریان آهن مذاب در این لایه باعث ایجاد میدان مغناطیسی در کره زمین است. هسته داخلی یک کره به شعاع 3486 کیومتر است. برخلاف دمای بالاتر هسته داخلی، مواد تشکیل دهنده آن مقاوم تر هستند.

 زمین پویا:

زمین یک کره متحرک است! اگر ما بتوانیم صد میلیون سال به عقب برگردیم، چهره زمین را با آنچه که امروز می­بینیم کاملا متفاوت خواهیم یافت. هیچ اثری از کوههای آلپ یا خلیج مکزیک نخواهد بود، در عوض قاره­هایی در ابعاد، اشکال و موقعیتهای متفاوتی خواهیم یافت. بر خلاف زمین در چند میلیارد سال گذشته هیچ تغیر اساسی در سطح کره ماه به وجود نیامده است (فقط چند گودال اضافه شده است).

 تئوری صفحه زمین ساخت:

در طول چند دهه اخیر درباره کره متغیرمان مطالب بسیار زیادی آموخته­ایم. در این مدت تحولی عظیم در فهم ما از زمین بوجود آمده است. این تحول در ابتدای قرن بیستم با ارائه پیشنهاد مربوط به جابه جایی قاره­ای- تئوری ای  که بیان می­کند قاره­ها بر روی کره زمین حرکت می­کنند - آغاز گردید. این مطلب با فرض ثابت بودن قاره­ها و کف اقیانوسها که تا آن زمان مورد قبول بود در تضاد اساسی قرار داشت و به همین دلیل نیز 50 سال طول کشید تا داده کافی برای اثبات این نظریه جمع آوری شود.بر اساس تئوری صفحه زمینساخت، پوسته خارجی صلب زمین (لیتوسفر) به تکه­های متعددی شکسته شده است که هرکدام از آنها صفحه(Plate) نام دارند که در حال حرکت بوده و بصورت بی­وقفه تغییر شکل و اندازه می­دهند. همانگونه که در شکل 1 و شکل 2 مشاهده می­شود، هفت صفحه اصلی در لیتوسفر شناخته شده است. این صفحات عبارتند از: آمریکای شمالی، آمریکای جنوبی، اقیانوسیه، آفریقا، اوروآسیا، استرالیا و قطب جنوب.

شکل 1: صفحات اصلی سازنده سطح کره زمین

شکل 2: صفحات اصلی سازنده سطح کره زمین

صفحات با ابعاد متوسط مانند کاراییب، نازکا، فیلیپین، عربی، کوکوس و صفحه اسکاتیا هستند و علاوه بر آنها صفحات متعددی با ابعاد کوچکتر شناخته شده است. توجه نمایید که یک صفحه بزرگ ممکن است شامل یک قاره کامل و سطح بزرگی از کف دریا باشد (مانند صفحه آمریکای جنوبی). در حالی که هیچ صفحه­ای دقیقا بر اساس مرز یک قاره شناخته نشده است.صفحات سنگ کره با سرعت بسیار پایین ولی بطور مداوم نسبت به هم درحال حرکت هستند که بطور متوسط 5 سانتیمتر در سال است.
 این حرکت به دلیل توزیع نامساوی حرارت در داخل کره زمین است. مواد داغ که در عمق گوشته قرار دارند، به آرامی به سوی بالا حرکت می­کنند و به عنوان یکی از سیستمهای همرفت درونی سیاره عمل می­نمایند. همزمان، قطعات سردتر و چگالتر سنگ­کره در داخل گوشته فرو می­روند. درنهایت حرکت عظیم و کند صفحات سنگ کره منجر به ایجاد زمین لرزه­ها، آتشفشانها و تغییر شکل توده­های بزرگ سنگی به صورت کوه­ها می­گردد.
پدیده همرفت در داخل کره زمین همانند جریان همرفتی است که وقتی کتری پر از آب بر روی آتش قرار داده می­شود در آن اتفاق می­افتد. آب قسمت تحتانی آب قبل از قسمتهای دیگر گرم شده و در اثر انبساط چگالی آن کاهش می­یابد و این باعث جریان یافتن آب به سمت بالا شده و همزمان آب نسبتا سردتر از سطح آب به سمت کف کتری حرکت کرده و آب سرد و گرم جایگزین یکدیگر می­گردد.

مرز صفحات:

صفحات تشکیل دهنده سنگ کره بصورت یک توده بهم چسبیده، نسبت به یکدیگر در حال حرکت هستند. با وجود اینکه قسمتهای داخلی صفحات ممکن است متحمل مقداری تغییر شکل گردند، ولی تمام اندرکنشهای اصلی بین صفحات جداگانه، در طول مرز بین آنها اتفاق می­افتد. در حقیقت تلاشهای اولیه برای مشخص کردن مرز بین صفحات بر اساس محل وقوع زمین لرزه­ها بود. صفحات در مرزها سه رفتار کلی نسبت به هم دارند:

1- مرزهای دورشونده:

جایی که صفحات در نتیجه بالا آمدن مواد از گوشته از هم دور می­شوند و بستر جدیدی در اقیانوسها ساخته می­شود. جداشدگی صفحات، غالبا در رشته­کوههای میان اقیانوسی رخ می­دهد. شکافهای ایجاد شده در اثر دور شدن صفحات، بلافاصله با سنگهای مذاب که از استنوسفر بالا می­آید، پرمی­شوند. این مواد گرم، به آرامی سرد شده و بستر جدید اقیانوسی را تشکیل می­دهند. این پدیده میلیونها سال بطور مداوم تکرار می­شود و بدین ترتیب هزاران کیلومتر مکعب بستر جدید ایجاد می­گردد.این مکانیزم کف اقیانوس اطلس را در 160 میلیون سال گذشته پدید آورده است که به این پدیده "گسترش بستر دریا" اطلاق می­شود. سرعت بستر سازی در قسمتهای مختلف متفاوت است.
 این سرعت از 5/2 سانتیمتر در سال در اطلس شمالی تا 20 سانتیمتر در سال در قسمت شرقی اقیانوس آرام متغیر است. با اینکه بیشترین نرخ بستر سازی در مقیاس تاریخ بشر بسیار کند است، ولی کمترین نرخ تولید سنگ­کره به اندازه کافی سریع است که در طول 200 میلیون سال گذشته بستر تمام اقیانوسهای زمین را ایجاد کرده باشد. در حقیقت بستر تمام اقیانوسها که تعیین عمر شده­اند از 180 میلیون سال تجاوز نمی­کند.

شکل 3: مرزهای واگرا در محل رشته­کوههای اقیانوسی

شکل 4: تولید بستر اقیانوسی در مرزهای واگر

شکل 5: نحوه بالا آمدن سنگهای مذاب در مرزهای واگرا و تشکیل بستر جدید

2- مرزهای همگرا:

در این نواحی، صفحات به سوی هم حرکت می­کنند و در نتیجه پدیده فرونشست پوسته اقیانوسی در گوشته اتفاق می­افتد. همگرایی ممکن است در مرز تصادم دو پوسته قاره­ای نیز اتفاق بیفتد و باعث ایجاد سامانه­های کوهستانی گردد.درحالی که پوسته جدید در رشته­کوههای اقیانوسی اضافه می­شوند، سیاره زمین بزرگتر نمی­شود و مساحت سطحی آن همواره مقدار ثابتی باقی می­ماند. برای جادادن به پوسته تازه ایجاد شده، پوسته قدیمی اقیانوسی در طول مرزهای همگرا دوباره به گوشته بازمی­گردد. وقتی دو صفحه به هم می­رسند، یکی از صفحات به زیر صفحه دیگر خم شده و به زیر آن می­لغزد.  حاشیه­هایی از صفحات که پوسته اقیانوسی در حالا از بین رفتن است به نام "مناطق فرورانش" شناخته می­شوند. در این مناطق صفحه فرورفته درحال حرکت به سمت پایین، وارد محیط با دما و فشار بالا می­شود. مقداری از مواد فرو رفته و نیز مقدار بیشتری از استنوسفر که در بالای صفحه فرورفته قرار می­گیرد، ذوب شده و به سوی بالا حرکت می­کند.
 بندرت این سنگ مذاب ممکن است که به سطح زمین برسد و انفجارات آتشفشانی را ایجاد نماید. بهرحال بیشتر این مواد مذاب به سطح زمین نمی­رسد و در همان عمق جامد شده و به ضخیمتر شدن پوسته می­انجامند (شکل 6).

شکل 6: مرزهای همگرا و ناحیه فرورانش

3- مرزهای گسل امتدادلغز:

مرزهایی هستند که در آنها صفحات بصورت سایشی از کنار هم عبور می­کنند و هیچگونه فرسایشی در مرزها ایجاد نشده و پوسته جدیدی تولید و پوسته قدیمی نابود نمی­شود. این گسلها در جهت حرکت صفحات ایجاد شده  برای اولین بار در امتداد رشته­کوههای اقیانوسی یافت شدند. با وجود اینکه بیشتر گسلهای امتداد­لغز در طول رشته کوههای اقیانوسی قرار گرفته اند، تعدادی نیز در داخل قاره­ها وجود دارند. دو مثال از این گسلها، گسل سن­آندریاس در کالیفرنیا و گسل آلپین در زلاندنو می­باشد. در طول گسل سن آندریاس، صفحه "آرام" درحال حرکت به سمت شمال غربی نسبت به صفحه مجاور (صفحه آمریکای شمالی) است. حرکت درطول این مرز ناشناخته نمانده است، چرا که این حرکت باعث ایجاد کرنش در سنگهای دو سمت گسل می­گردد وگاهی سنگها, انرژی ذخیره شده را بصورت زلزله­های بزرگی رها می­کنند، مانند زلزله سال 1906 که سان فرانسیسکو را ویران کرد.

شکل 7: مرزهای امتداد لغز و امتداد گسل ایجاد شده

 تغییر شکل پوسته ای:

همانگونه که بیان شد، کره زمین یک سیاره پویا است که مواردی از قبیل هوازدگی، رانش زمین، و فرسایش توسط آب، باد و یخ بصورت مداوم چهره آن را تغییر می دهد. علاوه بر این نیروهای تکتونیکی (زمینساخت صفحه­ای) باعث تغییر در سنگهای پوسته زمین می شوند. با هر گامی که بر روی سطح زمین می­نهیم باعث ایجاد تغییر شکل در سطح خاک می شویم و پس از عبور ما، خاک به حالت اولیه خود بازمی­گردد، اما این تغییر شکل ها آنچنان اندک است که معمولا متوجه آن نمی شویم. این تغییر شکل ها در اثر نیروی محدودی است که به دلیل وزن ما به سطح زمین وارد می شود. اگر این نیرو زیاد باشد می تواند اثرات کاملا مشهودی ایجاد نماید. در این بخش به عوامل ایجاد تغییر شکل ها و نیز مکانیزم های تغییر شکل در اجسام و نیز پوسته زمین می­پردازیم.

 نیرو:

نیرو آن چیزی است که اجسام ثابت را به حرکت درمی­آورد و یا نحوه حرکت اجسام متحرک را تغییر می دهد. از تجربیات روزانه می­دانیم که اگر دری بسته (ساکن) باشد، باید به آن نیرو وارد کنیم تا باز شود (حرکت).

 تنش:

تنش مقدار نیرویی است که به واحد سطح وارد می شود. مقدار تنش به تنهایی تابعی از مقدار نیروی وارده نیست و به سطحی که نیرو به آن وارد می شود نیز وابسته می باشد. برای مثال اگر پای برهنه در حال راه رفتن بر روی سطح سختی باشید نیرو (وزن بدن شما) در سطح کف پای شما پخش می شود، لذا نیرویی که به هر نقطه از کف پای شما وارد می­شود کم است. اما اگر بر روی یک سنگ نوک تیز پا بگذارید، تمرکز تنش بر روی نقطه ای از کف پای شما بسیار زیاد خواهد شد. درواقع می توانید تنش را از میزان تمرکز نیرو بر روی سطح متصور شوید.

انواع تنش:

بر اساس جهت های مختلف نیروهای وارده، تنش های مختلفی ایجاد می­شود. بصورت خلاصه این تنشها عبارتند از:

1- تنش فشاری:

 در صورتی که نیروهای وارده باعث فشرده شدن جسم شوند تنش فشاری بوجود می آید. تنشهای فشاری تمایل دارند که صفحات سطح کره زمین را کوچکتر و ضخیمتر نمایند و این فرآیند با چین خوردگی و گسلش اتفاق می افتد.

 جهت اعمال نیروهای فشاری که منجر به فشرده شدن و ضخیمتر شدن صفحات پوسته می شود.

 تنش کششی :

در صورتی که تنش وارده تمایل به کشیدن توده سنگی ( و یا هر جسمی که به آن اعمال می شود ) داشته باشد تحت عنوان تنش کششی شناخته می­شود که باعث طویل تر شدن آنها می­گردد.

 تنش برشی:

وقتی یک دسته کارت را بر روی زمین قرار دهید و با دست خود آنها را به جلو برانید نمونه ای از تنش برشی را بر آن ها وارد نموده اید. در صورتی که تنش برشی بر توده سنگها وارد گردد باعث لغزش صفحات در کنار یکدیگر می شود.


حال که با انواع عوامل ایجاد تغییر شکل آشنا شدیم، باید بدانیم که اجسام هم در مقابل عوامل تغییر شکل رفتارهای مختلفی از خود نشان می­دهند.  سنگ کره هم از این قاعده جدا نیست و در مقابل تنشهای مختلفی که به آن وارد می­شود، به صورتهای زیر درمی آید:

 عکس العمل سنگ کره به تنش فشاری در حالت شکننده (بالا) و در حالت شکلپذیر (پایین). این همان اتفاقی است که در مرزهای همگرا اتفاق می­افتد.

 

عکس العمل سنگ کره به تنش کشش در حالت شکننده (بالا) و در حالت شکلپذیر (پایین). این همان اتفاقی است که در مرزهای واگرا دیده می شود.

عکس العمل سنگ کره به تنش برشی در حالت شکننده (راست) و در حالت شکلپذیر (چپ). در مرزهای امتداد لغز شاهد چنین تغییر شکل هایی هستیم.

 

مناطق زلزله خیز کره زمین:

مهمترین مناطق زلزله خیز دنیا درسه منطقه پراکنده اند:

کمر بند چین خورده آلپ – هیمالیا :

جائی که پوسته آسیا – اروپا(اوراسیا) به صفحه آفریقا – هند برخورد می کند .در کشورهای ایتالیا ، یونان ، ترکیه ، ایران ، شمال هند …..

تصویر  

کمر بند اطراف اقیانوس آرام :

جائی که صفحه اقیانوس آرام به صفحه قاره آسیا – اروپا ـ آمریکای جنوبی ـ استرالیا و امریکای شمالی برخورد می کند. در این ناحیه از کامچاتکا تا هکایدو شدیدترین زلزله ها اتفاق می افتد . عمق کانون زلزله در این منطقة به حدود 60 کیلومتر می رسد وامواج تسونامی در اثر زلزله دراین منطقه ایجاد می شود.

کمربند میانی اقیانوس اطلس :

جائی که صفحه اقیانوس اطلس در حال گسترش است این زلزله ها نسبتاً ملایم وآرامش مردم را چندان بهم نمی زند.به استثنای گودالهای اقیانوسی کانون زمین لرزه ها در عمق 50 کیلومتری پوسته زمین است . در گودالهای اقیانوسی کانون زلزله ها در عمق 300 تا 700 کیلومتر مشاهده شده است جائی که به صفحه ای موربی بنام “ سطح بنیوف ” وجود دارد.البته زلزله ها در طول گسلهای تغییرشکل دهنده ( جائی که صفحه ها درامتداد هم می لغزند )نیز وجود دارند مثل زلزله ای که در طول گسل سن آندریاس اتفاق افتاد . (سان فرانسیسکو 1906 )

 

 

 




زلزله چیست؟

لرزش ناگهانی پوسته‌های جامد زمین ، زلزله یا زمین لرزه نامیده می‌شود. دلیل اصلی وقوع زلزله را می‌توان افزایش فشار بیش از حد داخل سنگها و طبقات درونی زمین بیان نمود. این فشار به حدی است که در سنگ گسستگی بوجود می‌آید و دو قطعه سنگ در امتداد سطح شکستگی نسبت به یکدیگر حرکت می‌کنند. به سطح شکستگی که توأم با جابجایی است، گسل گفته می‌شود. وقتی که سنگ شکسته می‌شود، مقدار انرژی که در زمان طولانی در برابر شکستگی حالتهای مختلفی را برای آزادسازی انر‍ژی نهفته شده بوجود می‌آورد.

بطوری که در ابتدا فشار و نیروهای درونی ممکن است باعث ایجاد یکسری لرزه‌های خفیف و کوچک در سنگها شود که پیش لرزه نامیده می‌شود. بعد از اینکه فشار درونی بر مقاومت سنگها غلبه کرد انرژی نهفته آزاد می‌گردد و زمین لرزه اصلی رخ می‌دهد، البته نباید از اثر لرزشهای کوچکی که بعد از زمین لرزه اصلی نیز اتفاق می‌افتد و به نام پس لرزه معروف هستند، چشم پوشی کرد. لرزه ، پیش لرزه ، لرزه اصلی و پس لرزه مجموعا یک زمین لرزه را نشان می‌دهند.

باید توجه داشت که تمام زلزله‌ها با پیش لرزه‌ها همراه نیست و همچنین پیش لرزه را نمی‌توان مقدمه وقوع یک زلزله بزرگ دانست، زیرا در بسیاری از موارد یک زلزله مخرب خود یک پیش لرزه فوق العاده مخربی بوده است که در تعقیب آن اتفاق افتاده است. همچنین در بسیاری از زمین لرزه‌ها زلزله اصلی بدون هیچ لرزه قبلی و یکباره اتفاق می‌افتند، زلزله‌هایی هم در اثر عوامل دیگر مثل ریزشها (مثلا ریزش سقف بخارهای آهکی و زمین لغزشها) و یا در بعضی موارد
فعالیتهای آتشفشانی نیز بوجود می‌آید که مقدار و شدت آنها کمتر است.

چرا زلزله بوجود می‌آید؟

به درستی مشخص نیست که چرا زلزله بوجود می‌آید، اما همانطور که قبلا اشاره شد تجمع انر‍ژی در درون زمین از یک طرف و افزایش نیروی زیاد در درون زمین و عدم تحکمل طبقات زمین برای نگهداری این انرژی از طرف دیگر موجب شکسته شدن زمین در بعضی نقاط آن شده و انرژی از محل آن آزاد می شود. این شکستگی که اکثرا با جابجایی زمین اتفاق می‌افتد باعث خطرات و ایجاد لرزش زمین می‌شود که به آن زلزله گفته می‌شود.

اما این انرژی از کجا می آید؟ برخی معتقدند که زمین از ورقه‌هایی تشکیل شده است که این ورقه‌ها با صفحاتی که در کنار هم قرار دارند به یکدیگر فشار وارد کرده و باعث می‌شوند که ورقه‌هایی که دارای وزن کمتری هستند به داخل زمین فرو روند (این پدیده در اصطلاح علمی فرو رانش صفحات گفته می‌شود). همچنین ممکن است که ورقه‌ها در کنار یکدیگر به هم فشرده شوند. در اثر فرو رانش و پایین رفتن صفحه به درون زمین و به دلیل افزایش فشار و دمای طبقات درونی ، ورقه شروع به گرم شدن و ذوب شدن می‌کند و مواد مذاب حاصله سبک شده و مجددا به سمت بالا حرکت کرده و فشاری را به طبقات مجاور وارد می‌کند.

ترکیب این نیروها در درون زمین باعث ایجاد یک حالت عدم تعادل انرژی می‌شود، این وضعیت تا زمانی که طبقات فوقانی و سطحی زمین تحمل مقاومت در برابر آن را داشته باشند حفظ می‌گردد. اما زمانی که سنگها دیگر تحمل این فشارها را نداشته باشند، انرژی به یکباره آزاد می‌گردد و زلزله بوجود می‌آید. البته این بدان مفهوم نیست که تمامی زلزله‌ها بدین طریق ایجاد می‌شوند، بلکه می‌توان گفت بخش اصلی زمین لرزه‌ها ، با این فرضیه قابل توجیه است.

تصویر


رابطه گسل با زلزله

رابطه گسل - زلزله دو طرفه می‌باشد. یعنی وجود گسلهای فراوان در یک منطقه سبب بروز زلزله می‌گردد. این زلزله به نوبه خود سبب ایجاد گسل جدیدی گردیده و نتیجتا تعداد شکستگیها زیادتر شده و به این ترتیب قابلیت لزره خیزی منطقه افزایش می‌یابد.

نحوه آزاد شدن انرژی زلزله

ممکن است یک زلزله به همراه خود پیش لرزه و پس لرزه‌هایی داشته باشد، که این دو قبل و بعد از زلزله اصلی ممکن است وقوع یابند، به عبارتی دیگر این موضوع به نحوه آزاد شدن انرژی زلزله بستگی دارد. بطوری که انرژی زلزله بصورتهای زیر آزاد می‌گردند:

پیش لرزه

گاهی اوقات از بروز زلزله اصلی ، یکسری زلزله‌هایی با بزرگی کمتر از زلزله اصلی به وقوع می‌پیوندند که معمولا فراوانی آنها با نزدیک شدن به زمان وقوع لرزش اصلی ، افزایش می‌یابد.

لرزش اصلی

همان زلزله اصلی بوده که بواسطه آن اکثر انرژی ذخیره شده در سنگها یکباره آزاد می‌گردد و چنانچه داده‌های مربوط به یک زلزله بزرگ غیر دستگاهی باشد مهلرزه نامیده می‌شود.

پس لرزه

زلزله‌های خفیفتری که غالبا پس از لرزش اصلی ، از حوالی کانون زلزله اصلی منشأ می‌گیرند، را پس لرزه می‌گویند. پس لرزه‌ها می‌توانند حتی تا سالها پس از وقوع زلزله‌های اصلی نیز به طول انجامد.

دسته لرزه

مجموعه‌ای از تعداد زیادی زلزله که در یک منطقه محدود در مقطع زمانی در حد هفته تا چند ماه به وقوع می‌پیوندد. دسته لرزه‌ها غالبا در نواحی آتشفشانی دیده می‌شوند.

ریز لرزه

زلزله‌های ضعیفی هستند که بزرگی آنها 3 ریشتر و یا کمتر از 3 بوده و غالبا افزایش ناگهانی و نامنظم آنها نشانه قریب الوقوع بودن مهلرزه یا زلزله اصلی می‌باشند.

- علائم زلزله قریب الوقوع:

 انواع بسیار متفاوتی از فعالیت های کوتاه مدت، که طول آنها از چند روز تا چندسال تغییر می کند، قبل از زلزله های بزرگ ذکر شده اند. زلزله شناسان به دنبال الگوهای منظم در چنین پیش درآمدهای کوتاه مدتی هستند.از یک طرف امواج ضربه ای پیشینی (foreshocks)، مجموعه ای از لرزه های خفیف یا دوره های بدون لرزه پیش از زلزله های بزرگ گزارش شده اند، گرچه آنها لزوماً همیشه رخ نمی دهند. رفتارهای غیرعادی حیوانات نیز که به عنوان پیش بینی کننده زلزله  ذکر شده است همیشگی نیست.از طرف دیگر تنش فوق العاده صخره ها که درشرف جابه جایی هستند باعث گرم شدن، تغییر شکل و انبساط آنها پیش از زلزله می شود و بنابراین شماری از تغییرات در پوسته زمین پیش از زلزله رخ می دهد و دانشمندان از وسایل گوناگونی برای اندازه گیری و ثبت این تغییرات استفاده می کنند؛ هر چند که هیچ کدام از این موارد نیز پیش بینی کننده قطعی و دقیق زلزله نیستند. از جمله این تغییرات اینها هستند:

 

  • گاهی زمین ممکن است در حد چند میلی متر یا سانتی متر پیش از زلزله انحنا پیدا کند. انحنا سنج هایی (Tilt meter) که در سوراخ های عمیق و با دقت حفر شده قرار داشته باشند، می توانند این پدیده را کشف کنند.

 

  •  تغییراتی در سرعت امواج لرزه ای در صخره های تحت تنش قرار گرفته نزدیک به گسل یافت شده است. شکاف های ذره بینی در صخره تحت تنش قرار گرفته نسبت به جهتی که تنش بر آنها وارد می شود به هم می پیوندند و این امر می تواند بر چگونگی عبور لرزه های خفیف از میان آنها تاثیر بگذارد.

 

  • گاز رادون ممکن است از این شکاف های ریز تازه به وجود آمده در یک صخره تحت فشار ساطع شود. آبی که به درون صخره نفوذ می کند مواد شیمیایی از جمله رادون را از صخره جذب می کند و در نتیجه محتوای شیمیایی چنین موادی در آب چاه های منطقه افزایش می یابد.

 

  • جریان یافتن آب های زیرزمینی به درون شکاف های صخره ها ممکن است باعث کاهش سطح سفره آب زیرزمینی منطقه شود.

 

  • دربعضی از صخره های نزدیک به نقطه جابه جایی گسل ممکن است تغییر رسانایی الکتریکی ثبت شود.
  •  دماى آب چشمه ها و قنوات و چاهها کاهش و یا افزایش ناگهانى پیدا مى کند و از نظر طعم و مزه دچار تغییراتى محسوس مى گردد، همچنین در حجم و مقدار هم افزایش و یا کاهش را خواهیم داشت.
  • پیش از وقوع زلزله ادوارى شکافهایى در سنگها و پوسته زمین به وجود مى اید که همگى در جهت خاصى هستند و بعد از وقوع شکافهاى حاصل از زمین لرزه دقیقاً در امتداد شکافهاى قبل از وقوع آن امتداد مى یابد.

 درخصوص علائم غیرطبیعى همچون مشاهده شدن اشیاى نورانى در شبهاى قبل از زلزله نیز گزارشات زیادى دریافت شده این اشیاء در جهت جنوب حرکت کرده و به ناگهان به سمت شرق تغییر مسیر مى دهند.
حیوانات نیز در برابر زلزله از خود رفتارهاى خاصى بروز مى دهند این رفتارها در حیوانات اهلى همچون خر و الاغ و خرگوش فرار به سوى سربالایى مى باشد. آنان هیچ گاه به سمت سراشیبى حرکت نمى کنند و در ماهى ها مرگ گروهى و بى دلیل و در پرندگان اهلى همچون اردک و غاز که در مسیر تابش امواج ماوراء صوت قرارگرفته اند سوختگى در امحا و احشاى داخلى و مرگ گزارش شده است.
حیواناتى که در منزل نگهدارى مى شوند همچون سگها، به شدت پارس مى کنند و مضطرب مى گردند و گربه هاى خانگى با جمع کردن بدن به صورت گلوله و یا انداختن خود در داخل ظرفهاى گود همچون سطل آشغال رفلکس نشان مى دهند.

 علائم متصل و منتهى به آغاز زلزله:

 شاهدان زیادى پس از زلزله گفته اند که با صدایى عجیب روبرو شده اند، بله درست است. در ابتدا معمولاً صدایى نامتعارف شنیده مى گردد. در زلزله هاى بزرگ ابتدا صداى عجیبى همچون باد و حرکت درختان و برگها و سپس صداى ضعیف شیشه هاى منزل شنیده مى شود و به سرعت لرزش هاى اولیه که معمولاً با شدت بالا نیستند آغاز مى گردد و پس از آن موج اصلى با مدت زمان چندثانیه اى و پس از آن پس لرزه هایى با شدت پایین و سپس اتمام زلزله!
عزیزان من گاهى این چند لحظه، چند دقیقه و حتى همچون بم چند ساعت است. به صورتى که خود پیش لرزه ها را ما با زلزله اصلى اشتباه مى گیریم. بم در ساعات پایانى شب دوبار لرزیده بود اما عزیزان ما یا با بى توجهى به آن در منازل خود خوابیدند و یا چند ساعتى را که سرماى بیرون به آنها تحمل داده بود را در حیاط ها ماندند و به داخل بازگشته، خوابیدند!...
پس اول از همه اگر زلزله کوچکى را تجربه کردید فراموش نکنید که ممکن است موج اصلى در راه باشد مکان هاى امن خانه را که برایتان توضیح خواهم داد را براى استراحت در نظر بگیرید حتماً با هوشیارى بخوابید اگر امکان خوابیدن در حیاط را دارید به عنوان یک تفریح هم شده شبى را با عزیزانتان در حیاط بیدار بمانید البته توجه کنید که از آوار دیوارهاى حیاط و خود ساختمان ایمن باشید.

امواج زمين لرزه :

درست مثل هنگامي كه درسطح آب اغتشاش روي مي دهد، انرژي آن به صورت امواج منتقل مي شود، وقتي كه شكست يا جابه جايي در پوسته زمين روي مي دهد، انرژي آن به صورت امواج زمين لرزه منتقل مي شود. در هر زمين لرزه اي چند نوع موج مختلف مشاهده مي شود. امواج اصلي از لايه هاي داخلي زمين عبور مي كنند، در حالي كه امواج سطحي از سطح مي گذرند. اغلب ويراني هاي زلزله توسط امواج سطحي - كه امواج L هم ناميده مي شوند _ به وجود مي آيد، زيرا اين امواج ارتعاشات شديدي را به وجود مي آورند. هنگامي كه امواج اصلي به سطح زمين رسيدند، امواج سطحي را به وجود مي آورند.امواج اصلي خود به دو گروه مهم تقسيم بندي مي شوند:

img/daneshnameh_up/6/68/0008n101.jpg


امواج اوليه كه امواج P نيز ناميده مي شوند، با سرعت 5/1 تا 8 كيلومتر در ساعت حركت مي كنند. سرعت حركت اين امواج به جنس زميني كه اين امواج از آنها عبور مي كنند بستگي دارد. سرعت اين امواج از موج هاي ديگر بيشتر است و بنابراين سريع تر به سطح زمين مي رسند. اين امواج قابليت عبور از جامدات، مايعات و گازها را دارند و به همين دليل به طور كامل از زمين عبور مي كنند. وقتي كه اين امواج از صخره ها عبور مي كنند، در مسير حركت خود به آنها به سمت جلو و عقب فشار وارد مي كنند.

امواج ثانويه امواج S ناميده مي شوند و مدت كوتاهي بعد از امواج P مي رسند. اين امواج هنگام حركت خود، صخره ها را به سمت بالا فشار مي دهند، يعني ارتعاش صخره ها عمود بر مسير حركت اين امواج است. امواج S برخلاف امواج P نمي توانند در داخل زمين به خط مستقيم حركت كنند. اين امواج فقط از مواد جامد مي گذرند و به همين دليل هنگامي كه در مركز زمين به مايع برسند، متوقف مي شوند.با اين همه هر دو نوع موج از سطح زمين مي گذرند و بنابراين مي توان آنها را در آن سوي نقطه اي كه زمين لرزه روي داده است، شناسايي كرد. در هر لحظه تعداد زيادي امواج زلزله اي ضعيف در قسمت هاي مختلف زمين قابل شناسايي است.

امواج سطحي را مي توان تا حدودي به امواج آب تشبيه كرد. چرا كه امواج سطحي حين حركت، سطح زمين را به سمت بالا و پايين مي رانند. حركت اين امواج باعث ويراني هاي شديدي مي شود، چرا كه صخره ها و پي ساختمان ها را به ارتعاش مي آورد. امواج L از همه كندتر هستند به همين دليل شديدترين لرزش ها در پايان يك زمين لرزه روي مي دهد.


شناسايي كانون زلزله :

همان طور كه ذكر شد سه نوع مختلف موج زلزله وجود دارد كه هر كدام با سرعت مشخصي حركت مي كند. به رغم آنكه سرعت دقيق امواج P و S بسته به جنس و نوع ماده اي كه اين امواج از آن عبور مي كنند، متغير است، نسبت سرعت حركت آن دو در تمام زمين لرزه ها تقريباً ثابت باقي مي ماند.معمولاًسرعت امواج P،حدود6/1برابرسرعت امواج S است.

دانشمندان مي توانند با استفاده از اين نسبت، فاصله بين هرنقطه از سطح زمين را با كانون زمين لرزه محاسبه كنند. كانون زلزله مكاني است كه امواج زمين لرزه از آنها شروع شده اند. براي تشخيص كانون زلزله از ابزاري استفاده مي شود كه زلزله نگار ناميده مي شود. زلزله نگار دستگاهي است كه امواج مختلف را ثبت مي كند. براي يافتن فاصله بين زلزله نگار و كانون زلزله، دانستن زمان رسيدن اين امواج نيز ضروري است. با در اختيار داشتن اين اطلاعات، اختلاف زماني بين رسيدن اين امواج محاسبه شده و سپس نمودار ويژه اي رسم مي شود كه در آن فاصله اي را كه موج مي تواند طي مدت اختلاف زماني محاسبه شده طي كند، به دست مي آيد.

اگر اطلاعاتي از اين دست را از سه يا چند نقطه مختلف به دست آوريم، مي توان مكان كانون زلزله را به دست آورد. براي اين كار كافي است كه كره اي فرضي حول هر يك از زلزله نگار ها رسم كرد كه در آن مكان اندازه گيري به عنوان مركز كره و فاصله محاسبه شده تا كانون زلزله به عنوان شعاع كره در نظر گرفته مي شود. پس سطح كره مورد نظر نشان دهنده تمام نقاطي است كه از زلزله نگار به اندازه مورد نظر فاصله دارد. بنابراين كانون زلزله مورد نظر بايد در جايي در سطح اين كره قرار داشته باشد. اگر دو كره را بر اساس اطلاعات به دست آمده از دو زلزله نگار مختلف رسم كنيد، از تقاطع دو كره يك دايره به دست مي آيد. از آنجايي كه كانون زلزله بايد در سطح هر دو كره قرار گرفته باشد، محيط دايره اي كه از تقاطع دو كره به دست مي آيد، نشان دهنده تمام كانون هاي ممكن براي زلزله مورد نظر است.

از تقاطع كره سوم با اين دايره فقط دو نقطه حاصل مي شود كه نشان دهنده كانون هاي محتمل براي زلزله است. از اين دو نقطه يكي در سطح زمين قرار دارد و ديگري در هوا، با توجه به آنكه كانون زلزله هميشه در سطح زمين قرار دارد، نقطه موجود در هوا كنار گذاشته شده و نقطه موجود در سطح زمين نشان دهنده مكان واقعي كانون زلزله است. 
  


درجه بندي دامنه و شدت زلزله :

در هنگام وقوع زلزله بارها با كلمه مقياس ريشتر مواجه مي شويم. شايد كلمه مقياس مركالي هم به گوشتان رسيده باشد هرچند كه كمتر مورد استفاده قرار مي گيرد. اين دو مقياس قدرت يك زلزله را از دو جنبه مختلف بيان كنند.

از مقياس ريشتر براي بيان بزرگي يك زمين لرزه يعني مقدار انرژي آزاد شده طي يك زمين لرزه استفاده مي شود. اطلاعات مورد نياز براي محاسبه بزرگي زمين لرزه را از لرزه نگار به دست مي آورند. مقياس ريشتر لگاريتمي است يعني افزايش يك واحد در مقياس ريشتر نشان دهنده افزايش ده واحدي در دامنه موج است. به عبارت ديگر دامنه موج در زلزله 6 ريشتري ده برابر دامنه موج زلزله 5 ريشتري است و دامنه موج 7 ريشتر 100 برابر زلزله 5 ريشتري است. مقدار انرژي آزاد شده در زلزله 6 ريشتري 7/31 برابر زلزله 5 ريشتري است.

بزرگترين زلزله ثبت شده 5/9 ريشتر شدت داشت، هرچند كه مطمئناً زلزله هاي شديدتري در تاريخ طولاني زمين روي داده است. عمده زلزله هايي كه روي مي دهد كمتر از 3 ريشتر قدرت دارند. زمين لرزه هايي كه كمتر از ? ريشتر شدت داشته باشند، نمي توانند ويراني هاي چنداني به بار آورند. زلزله هايي كه 7 ريشتر يا بيشتر قدرت داشته باشند، زلزله هاي شديدي محسوب مي شوند.مقياس ريشتر فقط يكي از عواملي است كه تبعات يك زلزله را بيان مي كند. قدرت تخريبي يك زلزله علاوه بر قدرت آن به ساختار زمين در منطقه مورد نظر و طراحي و مكان سازه هاي ساخت بشر بستگي دارد. ميزان ويراني هاي به بار آمده را معمولاً با مقياس مركالي بيان مي كنند.دانشمندان مي توانند درجه مقياس ريشتر را درست پس از زمين لرزه و زماني كه امكان مقايسه اطلاعات از ايستگاه هاي مختلف زلزله نگاري به وجود آمده، معين كنند. اما درجه مركالي را نمي توان به اين سرعت مشخص كرد و لازم است كه محققان زماني كافي براي بررسي اتفاقاتي كه حين زمين لرزه روي داده است، در اختيار داشته باشند. هنگامي كه تصور دقيقي از ميزان
خسارت هاي وارده به عمل آمد، مي توان درجه مركالي مناسب را تخمين زد.

مقابله با زمين لرزه :

طي پنجاه سال اخير اطلاعات زيادي در مورد زلزله كسب كرده و فرآيند وقوع آن را بهتر از پيش درك مي كنيم، اما هنوز هم براي مقابله با آن كاري نمي توانيم انجام دهيم. زمين لرزه ها توسط فرآيندهاي بنيادين و قدرتمند زمين شناختي كه خارج از حيطه كنترل ما هستند، به وجود مي آيند. اين فرآيندها نسبتاً غير قابل پيش بيني است، بنابراين در حال حاضر اين امكان وجود ندارد كه به مردم گفت دقيقاً چه وقت زلزله روي مي دهد. اين امواج زلزله اي ثبت شده، مي تواند به ما اطلاع دهد كه ارتعاش هاي بسيار قويتري در راه است، اما اين اطلاعات مي تواند فقط چند دقيقه پيش از وقوع زلزله به ما اخطار دهد. دانشمندان مي توانند برپايه حركت هاي صفحه ها در زمين و موقعيت منطقه هاي گسل، پيش بيني كنند كه در كدام مناطق احتمال وقوع زلزله زياد است. همچنين با تحقيق در تاريخ زمين لرزه هاي روي داده در منطقه مورد نظر، زمان احتمالي وقوع زلزله را پيش بيني كنند. با اين همه اين پيش بيني ها معمولاً بسيار ضعيف هستند. اما پيش بيني دانشمندان در مورد پس لرزه ها دقيق تر است. پس لرزه ها، لرزه هايي است كه پس از زلزله اوليه روي مي دهد. اين پيش بيني ها براساس تحقيق هاي بسيار وسيعي كه در مورد الگوهاي پس لرزه ها انجام شده است، صورت مي گيرد.زلزله شناسان در اين مورد كه چگونه زمين لرزه هايي كه از يك گسل شروع شده اند، مي توانند زلزله هاي ديگري را در گسل هاي متصل به يكديگر به وجود آورند، پيش بيني هاي دقيقي انجام مي دهند.

زمينه ديگر تحقيق ارتباط بين بارهاي الكتريكي و مغناطيسي در صخره ها و زمين لرزه است. بعضي از دانشمندان بر اين عقيده اند كه اين ميدان الكترومغناطيسي پيش از زمين لرزه تغيير مي كند. علاوه بر اين زلزله شناسان خروج گاز از زمين و تغيير شكل زمين را به عنوان علائم اخطار دهنده زمين لرزه مي شناسند. با اين همه در بسياري از موارد نمي توان زمين لرزه را با دقت كافي پيش بيني كرد.

پس براي مقابله با زمين لرزه چه كاري مي توان انجام داد؟ عمده پيشرفت هايي كه طي 50 سال گذشته حاصل شده است به آمادگي براي زلزله و مخصوصاً حيطه مهندسي عمران مربوط مي شود. طي چند دهه اخير استانداردهايي براي ساخت ساختمان ها در نظر گرفته شده است تا مقاومت آنها در برابر نيروي امواج زمين لرزه افزايش يابد. از استانداردهاي جديد مي توان به تقويت مصالح اشاره كرد. طراحي بناها به شيوه اي كه از انعطاف پذيري لازم براي جذب ارتعاش ها برخوردار باشند بدون آنكه تخريب شوند،يكي ديگر از اين روش هاست. طراحي ساختمان ها به شيوه اي كه بتوانند اين ضربه ها را بگيرند، مخصوصاً در مناطقي كه زلزله خيز هستند، از اهميت بسياري برخوردار است.يكي ديگر از مولفه هاي آمادگي، آموزش مردم است. امروزه بسياري از سامان هاي دولتي در اغلب كشورها دفترچه هاي راهنمايي منتشر مي كنند كه در آن چگونگي وقوع زلزله، راهنمايي هايي در مورد حفاظت خانه در برابر زلزله هاي احتمالي و فعاليت هايي كه در زمان وقوع زلزله بايد انجام داد، گردآوري شده است.

منبع :www.howstuffworks.com و ملاصدرا

لرزه خیزی ایران

در چارچوب جهانی، فلات ایران در محل تلاقی صفحه‌های عربستان (عربستان – آفریقا)، هند(هند- استرالیا) و اوراسیا(اروپا- آسیا) واقع شده است( شکل 23). تلاقی این صفحه‌ها باعث شده است تا پوسته فلات ایران که در کل ضعیف تر از صفحه های یاد شده است، تغییر شکل پیدا کند و توسط چین خوردگیها و رشته کوههایی چون زاگرس در غرب، البرز و کپه داغ در شمال و شمال شرق و کوههای شرق ایران و مکران به ترتیب در شرق و جنوب شرق احاطه شود. کوهها و چین خوردگیهای پوسته فلات ایران هنوز به وضعیت پایدار خود نرسیده اند، بنابرانی با تداوم حرکت صفحه‌ها شاهد فعالیتهای لرزه ای در اغلب نقاط ایران بخصوص نواحی کوهستانی هستیم. وقوع زمین‌لرزه‌هایی چون زمین‌لرزه 1357 طبس یادآور این مطلب است که حتی منطقه‌های نزدیک به ایران مرکزی به علت نیروهای وارده در معرض خطر زمین‌لرزه می باشند(شکل 24). نقاط مختلف ایران، به دلیل شرایط متفاوت، رفتار لرزه ای مشابه را نشان نمی دهند. در منطقه زاگرس که در واقع منطقه برخورد صفحه عربستان با ایران است، نیروها فشاری است. وجود لایه‌های شکل پذیری تبخیری چون نمکهای هرمز در این منطقه باعث شده است تا زمین‌لرزه‌ها اغلب دوره بازگشتی کوتاه را نشان دهند و در نتیجه به علت فاصله زمانی کوتاه بین رویداد زمین‌لرزه‌ها، انرژی انباشته شده در حدی نیست که زمین‌لرزه‌های با بزرگی بالا را سبب شود. به این ترتیب زمینلرزه‌های زاگرس اغلب فراوان، با بزرگی متوسط وبیشتر بواسطه وجود سازنده‌های تبخیری کم و بدون شکستگی سطحی (گسله) می باشند. منطقه‌های البرز و کپه داغ که در جنوب صفحه اوراسیا واقع شده اند عموماً رفتار لرزه ای متفاوتی را در مقایسه با زاگرس نشان می دهند. زمین‌لرزه‌ها در این منطقه فراوانی کمتری را نشان می دهند و نسبت به زاگرس انرژی بیشتری را رها می سازند. زمینلرزه‌های بزرگ آن قسمت را می توان اغلب به شکستگیها ( گسله‌ها) نسبت داد. منطقه ایران مرکزی که بین زاگرس و کپه داغ واقع شده است. لرزه خیزی ناپیوسته ای را نشان می دهد و اغلب زمین‌لرزه‌های بزرگی را به همراه دارد. این زمین‌لرزه‌ها معمولا دوره بازگشتی طولانی دارند و می توان آنها را به گسله‌های بارزی نسبت داد. منطقه مکران که در جنوب شرقی ایران واقع شده است در واقع متاثر از فرو رفتن پوسته اقیانوسی به زیر صفحه ایران است. فعالیت لرزه ای این منطقه در مقایسه با زاگرس کمتر است و در قرن حاضر دو زمین‌لرزه با بزرگی بیش از 7 در آنجا واقع شده است.


 
موقعیت فلات ایران

به این ترتیب مشخص می شود که ایران در یک منطقه لرزه خیز واقع شده است و بخشهای مختلف آن رفتار لرزه ای متفاوتی را نشان می دهند.


 
: نمایش توزیع زمین‌لرزه‌ها در ایران و تمرکز بیشتر آنها در منطقه زاگرس در مرز برخورد با صفحه عربستان و ایران.

 

  1. تهرانی ، خسرو - زمین شناسی ایران - دانشگاه پیام نور ، 1377.
  2. درویش زاده ، علی - زمین شناسی ایران - انتشارات امیرکبیر ، 1380.
  3. معماریان ، حسین - زمین شناسی مهندسی و ژئوتکنیک - انتشارات دانشگاه تهران ، 1381.

      

 




تاريخ : دوشنبه بیست و ششم فروردین 1387 | 17:18 | نویسنده : یک دبیر |